
Why I Prefer
Good Testing Over
Excellent Testing
Tina Fletcher - @fletchertinam

Oracle NetSuite HCM Summit – 08/02/18



Outline:
- Definitions and why I care about this
- Story time (5):
- Defects I’ve missed lately
- Times I’ve been saved by failure planning

- So what?



With enough time, we’ll find every bug!
But…

Do testing, and also prepare for failure



Excellent Testing:
- Think of as many test cases as you can

- Keep testing until you run out of time

- Try to run them all



Good Testing:
- Think of as many test cases as you can

- Spend remaining time planning failure handling

- Run the ones that will tell you the most 
about how well your product is working



Defects I’ve 
Missed Lately

(and wouldn’t have found with 
all the time in the world)



Monitoring user 
REALLY loves the 

home page

Story 1:



Story 1: Monitoring user REALLY loves the home page
Tool Usage

Home Page Content Classlist Quizzes

Grades Discussions Assignments ePortfolio

Announcements Survey Groups



Story 1: Monitoring user REALLY loves the home page

We did a lot of testing 
for this report.



Story 1: Monitoring user REALLY loves the home page

We tested the appearance of the graph.

What if there are a really large or small number of tools available?

What if there are really long or short tool names?

What if tool names contain special characters, or appear in other languages?

Does the graph look ok in all the browsers we support?

Does the graph look ok on phones and tablets?

Can the graph be understood by someone using a screen reader?



Story 1: Monitoring user REALLY loves the home page

We tested the event flow through our system.

How long does it take from the time an event is sent to the time it is reflected in the report?

What happens if an event is malformed in some way?

Are all of the appropriate events fired even when the system is under heavy load? 

Will events get re-queued if the event processing system is down or not responding?

Is an event fired if a tool is accessed via API rather than through the UI?

What if the same user visits the same tool many times in quick succession?

What kind of event is sent when using the learning platform's impersonation functionality?



Story 1: Monitoring user REALLY loves the home page

We tested data retrieval functionality.

What is displayed if no data is available, or data cannot be retrieved?

How is the graph impacted if a user retrieves data while in a different time zone? 

What happens if the retrieved data arrives in an unexpected format?

Does data retrieval time increase if a large number of users are accessing it at the same time?

Does data retrieval time increase for very large data sets?

Is retrieval of the data appropriately restricted to users that have permissions to view this report?



Story 1: Monitoring user REALLY loves the home page

We did a lot of testing 
for this report.



Story 1: Monitoring user REALLY loves the home page
Tool Usage

Home Page Content Classlist Quizzes Grades Discussions

Assignments ePortfolio Announcements Survey Groups



Story 1: Monitoring user REALLY loves the home page
Tool Usage

Home Page Content Classlist Quizzes

Grades Discussions Assignments ePortfolio

Announcements Survey Groups

Tool Usage

Home Page Content Classlist Quizzes

Grades Discussions Assignments ePortfolio

Announcements Survey Groups

Why??

Each school has an automated “monitoring” user that hits the home 
page tool once every 5 minutes to make sure the site is up.



LESSON:
You don’t know what 

you don’t know.
(and you won’t be testing for it)

Story 1: Monitoring user REALLY loves the home page



The port that was 
closed for no reason

Story 2:



Story 2: The port that was closed for no reason

Old Broadcast 
Event Service

New Broadcast 
Event Service



Story 2: The port that was closed for no reason

Why??



Story 2: The port that was closed for no reason

Why??

Port X was closed. But it was open when we last checked.



Story 2: The port that was closed for no reason

LESSON:
What’s true today 
might not be true 

tomorrow.



Yeah, but S3 will 
never go down

Story 3:



Story 3: Yeah, but S3 will never go down



Story 3: Yeah, but S3 will never go down

S3 contingency planning

Security testing

Performance testing



Story 3: Yeah, but S3 will never go down



Story 3: Yeah, but S3 will never go down

LESSON:
Things that are out of your 

control can impact you.
(and nothing is invincible)



Times I Have Been Saved 
By Solid Monitoring and 
Roll-Back Strategies



The off by 
10,000 error

Story 4:



Story 4: The off by 10,000 error



Story 4: The off by 10,000 error



Story 4: The off by 10,000 error

Why??

Every instance of the software was pinging the message broker 
once every one second.



Story 4: The off by 10,000 error

LESSON:
If your thing is working 
fine, it doesn’t mean 

there are no problems.



The calmest 
production failure 

ever

Story 5:



Story 5: The calmest production failure ever



Story 5: The calmest production failure ever



Story 5: The calmest production failure ever



Story 5: The calmest production failure ever



Story 5: The calmest production failure ever

LESSON:
Safe roll-out and roll-back 

strategies allow you the luxury 
of thinking clearly during 

“emergencies”.



Story Time Summary:
- You don’t know what you don’t know
- What’s true today could change tomorrow
- Things out of your control can impact you
- Working fine != there are no problems
- Failure handling strategies  clear thinking



Story Time Summary:

Excellent testing would not have helped.



How do I make 
“good testing” 
work for me?

Conclusion:



1. Do good testing

- Test until you feel pretty confident

- Maybe focus on cases that are hard to 
monitor for



1. Do good testing

- Skip tests that are not “real” enough

- Skip tests that cost more than they’re worth

- Skip tests where failure would not result in 
a bug fix



2. Plan for failure – roll out & roll back

- Is it possible to roll out our changes gradually? 

- What’s the fastest way we could roll back 
to an earlier version?



2. Plan for failure – detecting issues

- Who is responsible for responding to error 
notifications?

- How will we be notified when things are going 
wrong?

- What information is needed to detect that 
something is going wrong? 



2. Plan for failure – responding to issues

- Are there cases where fixes or solutions 
could be executed automatically?

- What communications should occur while 
we are dealing with issues?

- What troubleshooting steps will we take 
when we get an error notification?



2. Plan for failure

… plus many more!



What does all this 
mean for me and 

my team?

Conclusion:



1. Changes in focus

- Both devs and testers think about 
observability up front



1. Changes in focus

- Both devs and testers think about 
observability up front

- Use time not spent on last mile of testing 
to prep for failure handling



1. Changes in focus

- Both devs and testers think about 
observability up front

- Use time not spent on last mile of testing 
to prep for failure handling

- Test your monitoring



2. Changes in expectations

- Maybe you’ll release more bugs



2. Changes in expectations

- Maybe you’ll release more bugs

- You’ll probably NOTICE more bugs



2. Changes in expectations

- Maybe you’ll release more bugs

- You’ll probably NOTICE more bugs

- You might be on-call (good motivation to 
invest in reliability and self-healing!)



2. Changes in success criteria

- Instead of “lower escaped defects”, lower 
MTTR



2. Changes in success criteria

- Instead of “lower escaped defects”, lower 
MTTR

- Instead of “how could we have missed this”, 
consider whether it could be automatically 
resolved next time



Be ready to handle 
failure; you won’t find 
all the bugs anyway

Remember:



Thanks!

@fletchertinam
tinafletcher.ca


